Kashaev's conjecture and the chern-simons invariants of knots and links

Hitoshi Murakami, Jun Murakami, Miyuki Okamoto, Toshie Takata, Yoshiyuki Yokota

研究成果: Article

38 引用 (Scopus)

抜粋

R. M. Kashaev conjectured that the asymptotic behavior of the link invariant he introduced [Kashaev 95], which equals the colored Jones polynomial evaluated at a root of unity, determines the hyperbolic volume of any hyperbolic link complement. We observe numerically that for knots 63, 89 and 820 and for the Whitehead link, the colored Jones polynomials are related to the hyperbolic volumes and the Chern-Simons invariants and propose a complexification of Kashaev's conjecture.

元の言語English
ページ(範囲)427-435
ページ数9
ジャーナルExperimental Mathematics
11
発行部数3
DOI
出版物ステータスPublished - 2002 1 1

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント Kashaev's conjecture and the chern-simons invariants of knots and links' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用