Knot-inevitable projections of planar graphs

Kouki Taniyama*, Tatsuya Tsukamoto

*この研究の対応する著者

研究成果査読

2 被引用数 (Scopus)

抄録

For each odd number n, we describe a regular projection of a planar graph such that every spatial graph obtained by giving it over/under information of crossing points contains a (2,n)-torus knot. We also show that for any spatial graph H, there is a regular projection of a (possibly nonplanar) graph such that every spatial graph obtained from it contains a subgraph that is ambient isotopic to H.

本文言語English
ページ(範囲)877-883
ページ数7
ジャーナルJournal of Knot Theory and its Ramifications
5
6
DOI
出版ステータスPublished - 1996 12
外部発表はい

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Knot-inevitable projections of planar graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル