Koopman spectral analysis of elementary cellular automata

Keisuke Taga*, Yuzuru Kato, Yoshinobu Kawahara, Yoshihiro Yamazaki, Hiroya Nakao

*この研究の対応する著者

研究成果: Article査読

抄録

We perform a Koopman spectral analysis of elementary cellular automata (ECA). By lifting the system dynamics using a one-hot representation of the system state, we derive a matrix representation of the Koopman operator as the transpose of the adjacency matrix of the state-transition network. The Koopman eigenvalues are either zero or on the unit circle in the complex plane, and the associated Koopman eigenfunctions can be explicitly constructed. From the Koopman eigenvalues, we can judge the reversibility, determine the number of connected components in the state-transition network, evaluate the period of asymptotic orbits, and derive the conserved quantities for each system. We numerically calculate the Koopman eigenvalues of all rules of ECA on a one-dimensional lattice of 13 cells with periodic boundary conditions. It is shown that the spectral properties of the Koopman operator reflect Wolfram's classification of ECA.

本文言語English
論文番号103121
ジャーナルChaos
31
10
DOI
出版ステータスPublished - 2021 10月 1

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 物理学および天文学(全般)
  • 応用数学

フィンガープリント

「Koopman spectral analysis of elementary cellular automata」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル