L p-L q maximal regularity and viscous incompressible flows with free surface

Yoshihiro Shibata, Senjo Shimizu

研究成果: Article

8 引用 (Scopus)

抜粋

We prove the L p-L q maximal regularity of solutions to the Neumann problem for the Stokes equations with non-homogeneous boundary condition and divergence condition in a bounded domain. And as an application, we consider a free boundary problem for the Navier-Stokes equation. We prove a locally in time unique existence of solutions to this problem for any initial data and a globally in time unique existence of solutions to this problem for some small initial data.

元の言語English
ページ(範囲)151-155
ページ数5
ジャーナルProceedings of the Japan Academy Series A: Mathematical Sciences
81
発行部数9
DOI
出版物ステータスPublished - 2005 11 1

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント L <sub>p</sub>-L <sub>q</sub> maximal regularity and viscous incompressible flows with free surface' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用