Large curvature effect on pulsatile entrance flow in a curved tube: Model experiment simulating blood flow in an aortic arch

T. Naruse*, K. Tanishita

*この研究の対応する著者

研究成果: Article査読

52 被引用数 (Scopus)

抄録

We measured the velocity profiles of pulsatile entrance flow in a strongly curved tube using a laser-Doppler anemometer in order to simulate blood flow in the aortic arch under various conditions, i.e., a ratio of tube to curvature radius of 1/3, Womersley parameters of 12 and 18, and peak Dean number up to 1200. Axial isovelocity contours of the cross-section showed the potential vortex to be near the entrance, and with the maximum velocity there being skewed towards the inner wall: thereafter shifting towards the outer wall. During the deceleration phase, reverse axial flow occurred near the inner wall, and a region of this flow extended downstream. The large curvature contributes to the enhancement of the secondary flow and flow reversal, which elevates the wall-shear stress oscillations. The location of elevated wall-shear oscillations corresponds to the vessel wall region where atherosclerotic formation frequently occurs; thereby indicating that both the large curvature and pulsatility play key roles in formation of localized atherosclerotic lesions.

本文言語English
ページ(範囲)180-186
ページ数7
ジャーナルJournal of Biomechanical Engineering
118
2
出版ステータスPublished - 1996 5月
外部発表はい

ASJC Scopus subject areas

  • 生体医工学
  • 生物理学

フィンガープリント

「Large curvature effect on pulsatile entrance flow in a curved tube: Model experiment simulating blood flow in an aortic arch」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル