Large Curvature Self-Folding Method of a Thick Metal Layer for Hinged Origami/Kirigami Stretchable Electronic Devices

Atsushi Eda, Hiroki Yasuga, Takashi Sato, Yusuke Sato, Kai Suto, Tomohiro Tachi, Eiji Iwase*

*この研究の対応する著者

研究成果: Article査読

抄録

A self-folding method that can fold a thick (~10 µm) metal layer with a large curvature (>1 mm−1) and is resistant to repetitive folding deformation is proposed. Given the successful usage of hinged origami/kirigami structures forms in deployable structures, they show strong potential for application in stretchable electronic devices. There are, however, two key difficulties in applying origami/kirigami methods to stretchable electronic devices. The first is that a thick metal layer used as the conductive layer of electronic devices is too hard for self-folding as it is. Secondly, a thick metal layer breaks on repetitive folding deformation at a large curvature. To overcome these difficulties, this paper proposes a self-folding method using hinges on a thick metal layer by applying a meander structure. Such a structure can be folded at a large curvature even by weak driving forces (such as those produced by self-folding) and has mechanical resistance to repetitive folding deformation due to the local torsional deformation of the meander structure. To verify the method, the large curvature self-folding of thick metal layers and their mechanical resistance to repetitive folding deformation is experimentally demonstrated. In addition, an origami/kirigami hybrid stretchable electronic device with light-emitting diodes (LEDs) is fabricated using a double-tiling structure called the perforated extruded Miura-ori.

本文言語English
論文番号907
ジャーナルMicromachines
13
6
DOI
出版ステータスPublished - 2022 6月

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 機械工学
  • 電子工学および電気工学

フィンガープリント

「Large Curvature Self-Folding Method of a Thick Metal Layer for Hinged Origami/Kirigami Stretchable Electronic Devices」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル