Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas

Akitaka Matsumura*, Kenji Nishihara

*この研究の対応する著者

    研究成果: Article査読

    82 被引用数 (Scopus)

    抄録

    The "inflow problem" for a one-dimensional compressible barotropic flow on the half-line R+ = (0, +∞) is investigated. Not only classical waves but also the new wave, which is called the "boundary layer solution", arise. Large time behaviors of the solutions to be expected have been classified in terms of the boundary values by [A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas, to appear in Proceedings of IMS Conference on Differential Equations from Mechanics, Hong Kong, 1999]. In this paper we give the rigorous proofs of the stability theorems on both the boundary layer solution and a superposition of the boundary layer solution and the rarefaction wave.

    本文言語English
    ページ(範囲)449-474
    ページ数26
    ジャーナルCommunications in Mathematical Physics
    222
    3
    DOI
    出版ステータスPublished - 2001

    ASJC Scopus subject areas

    • 数理物理学
    • 物理学および天文学(全般)
    • 統計物理学および非線形物理学

    フィンガープリント

    「Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル