Latency-Aware Inference on Convolutional Neural Network Over Homomorphic Encryption

Takumi Ishiyama, Takuya Suzuki*, Hayato Yamana

*この研究の対応する著者

研究成果: Conference contribution

抄録

Homomorphic encryption enables privacy-preserving computation in convolutional neural networks (CNNs), keeping their input and output secret from the server; however, it faces long latency because of large overhead of the encryption scheme. This paper tackles shortening the inference latency on homomorphic encryption-enabled CNNs. Since the highest inference accuracy is not always needed depending on real-world applications, finding best-fit combinations of latency and accuracy is also indispensable. We propose a combination of channel-wise packing and a structured pruning technique besides changing the active functions to shorten the inference latency while allowing accuracy degradation. Our experimental evaluation shows that we successfully tune the latency from 8.1 s to 12.9 s depending on the accuracy of 66.52% to 80.96% on the CIFAR-10 dataset.

本文言語English
ホスト出版物のタイトルInformation Integration and Web Intelligence - 24th International Conference, iiWAS 2022, Proceedings
編集者Eric Pardede, Pari Delir Haghighi, Ismail Khalil, Gabriele Kotsis
出版社Springer Science and Business Media Deutschland GmbH
ページ324-337
ページ数14
ISBN(印刷版)9783031210464
DOI
出版ステータスPublished - 2022
イベント24th International Conference on Information Integration and Web Intelligence, iiWAS 2022, held in conjunction with the 20th International Conference on Advances in Mobile Computing and Multimedia Intelligence, MoMM 2022 - Virtual, Online
継続期間: 2022 11月 282022 11月 30

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
13635 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference24th International Conference on Information Integration and Web Intelligence, iiWAS 2022, held in conjunction with the 20th International Conference on Advances in Mobile Computing and Multimedia Intelligence, MoMM 2022
CityVirtual, Online
Period22/11/2822/11/30

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Latency-Aware Inference on Convolutional Neural Network Over Homomorphic Encryption」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル