Learned Lossless Image Compression with A Hyperprior and Discretized Gaussian Mixture Likelihoods

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, Jiro Katto

研究成果: Conference contribution

4 被引用数 (Scopus)

抄録

Lossless image compression is an important task in the field of multimedia communication. Traditional image codecs typically support lossless mode, such as WebP, JPEG2000, FLIF. Recently, deep learning based approaches have started to show the potential at this point. HyperPrior is an effective technique proposed for lossy image compression. This paper generalizes the hyperprior from lossy model to lossless compression, and proposes a L2-norm term into the loss function to speed up training procedure. Besides, this paper also investigated different parameterized models for latent codes, and propose to use Gaussian mixture likelihoods to achieve adaptive and flexible context models. Experimental results validate our method can outperform existing deep learning based lossless compression, and outperform the JPEG2000 and WebP for JPG images.

本文言語English
ホスト出版物のタイトル2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ2158-2162
ページ数5
ISBN(電子版)9781509066315
DOI
出版ステータスPublished - 2020 5
イベント2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain
継続期間: 2020 5 42020 5 8

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2020-May
ISSN(印刷版)1520-6149

Conference

Conference2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
国/地域Spain
CityBarcelona
Period20/5/420/5/8

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Learned Lossless Image Compression with A Hyperprior and Discretized Gaussian Mixture Likelihoods」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル