Learning and Estimation of Latent Structural Models Based on between-Data Metrics

Kenta Mikawa, Manabu Kobayashi, Masayuki Goto, Shigeichi Hirasawa

研究成果

抄録

With the development of information technology, a wide variety of data have been accumulated, and there are many methods for analyzing such data. In this study, we model the input data and the metrics between the data based on the assumption that each metric is generated from a continuous latent variable. Specifically, we assume that the input data are generated using low-dimensional latent variables and their projection matrices. We describe a method for estimating the latent variables. Because the generative model defined in this study cannot obtain the Q function analytically, we use the Monte Carlo EM algorithm to approximate the Q function and investigate an efficient parameter estimation method. Experiments using artificial data and the 20 newsgroups dataset demonstrate the effectiveness of the proposed method.

本文言語English
ホスト出版物のタイトル2022 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2022 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ3113-3118
ページ数6
ISBN(電子版)9781665452588
DOI
出版ステータスPublished - 2022
イベント2022 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2022 - Prague, Czech Republic
継続期間: 2022 10月 92022 10月 12

出版物シリーズ

名前Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
2022-October
ISSN(印刷版)1062-922X

Conference

Conference2022 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2022
国/地域Czech Republic
CityPrague
Period22/10/922/10/12

ASJC Scopus subject areas

  • 電子工学および電気工学
  • 制御およびシステム工学
  • 人間とコンピュータの相互作用

フィンガープリント

「Learning and Estimation of Latent Structural Models Based on between-Data Metrics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル