Learning message-related coordination control in multiagent systems

Toshiharu Sugawara, Satoshi Kurihara

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

This paper introduces the learning mechanism by which agents can identify, through experience, important messages in the context of inference in a specific situation. At first, agents may not be able to immediately read and process important messages because of inappropriate ratings, incomplete non-local information, or insufficient knowledge for coordinated actions. By analyzing the history of past inferences with other agents, however, they can identify which messages were really used. Agents then generate situation-specific rules for understanding important messages when a similar problem-solving context appears. This paper also gives an example for explaining how agents can generate the control rule.

本文言語English
ホスト出版物のタイトルMulti-Agent Systems
ホスト出版物のサブタイトルTheories, Languages, and Applications - 4th Australian Workshop on Distributed Artificial Intelligence, 1998, Selected Papers
編集者Chenqi Zhang, Dickson Lukose
出版社Springer Verlag
ページ29-44
ページ数16
ISBN(印刷版)3540654771, 9783540654773
DOI
出版ステータスPublished - 1998 1 1
外部発表はい
イベント4th Australian Workshop on Distributed Artificial Intelligence, DAK 1998 - Brisbane, Australia
継続期間: 1998 7 131998 7 13

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
1544
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other4th Australian Workshop on Distributed Artificial Intelligence, DAK 1998
CountryAustralia
CityBrisbane
Period98/7/1398/7/13

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

フィンガープリント 「Learning message-related coordination control in multiagent systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル