Learning processes based on incomplete identification and information generation1 1 We thank K. Matsuno, K. Ito, and T. Nakamura for various discussions and suggestions. We also thank T. Hirabayashi for drawing some figures.

Yukio Pegio Gunji*, Shuji Shinohara, Norio Konno

*この研究の対応する著者

研究成果査読

5 被引用数 (Scopus)

抄録

The learning process consists of observation and inference. On the one hand, it is understood that the inference process involves internal choice. On the other hand, the internal process is not essentially expressed; however, the internal choice is explicitly written down by sorting of variants in many brain models. Finding out what the learning process is is nothing but to answer whether the origin of variants in variation and selection is a well-defined question or not. It is not whether we can find a sorting process in the brain or not, but whether the internal choice can be replaced by sorting of variants in programmable systems. We estimate here this type of question, and formalize internal choice in another way. In our model, the learning process is communication among elements of a system, in which an element learns the behavior of other elements through observation. However, observation is incomplete resulting from finite velocity of observation propagation. Incomplete identification (observation) is here formalized not by "variation and selection" but by decision change a posteriori, introducing backward-time. In our model, we can demonstrate that misreading a posteriori generates information that possibly generates novelty.

本文言語English
ページ(範囲)219-253
ページ数35
ジャーナルApplied Mathematics and Computation
55
2-3
DOI
出版ステータスPublished - 1993 5
外部発表はい

ASJC Scopus subject areas

  • 計算数学
  • 応用数学

フィンガープリント

「Learning processes based on incomplete identification and information generation<sup>1</sup> 1 We thank K. Matsuno, K. Ito, and T. Nakamura for various discussions and suggestions. We also thank T. Hirabayashi for drawing some figures.」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル