Learning type PID control system using input dependence reinforcement scheme

Hideharu Sawada, Ji Sun Shin*, Fumihiro Shoji, Hee Hyol Lee

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

PID control has widely used in the field of process control and a lot of methods have been used to design PID parameters. When the characteristic values of a controlled object are changed due to a change over the years or disturbance, the skilled operators observe the feature of the controlled responses and adjust the PID parameters using their knowledge and know-how, and a lot of labors are required to do it. In this research, we design a learning type PID control system using the stochastic automaton with learning function, namely learning automaton, which can autonomously adjust the control parameters updating the state transition probability using relative amount of controlled error. We show the effectiveness of the proposed learning type PID control system by simulations.

本文言語English
ページ(範囲)139-143
ページ数5
ジャーナルArtificial Life and Robotics
13
1
DOI
出版ステータスPublished - 2008 12月 1

ASJC Scopus subject areas

  • 生化学、遺伝学、分子生物学(全般)
  • 人工知能

フィンガープリント

「Learning type PID control system using input dependence reinforcement scheme」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル