Leray's problem on the stationary Navier-Stokes equations with inhomogeneous boundary data

Hideo Kozono*, Taku Yanagisawa

*この研究の対応する著者

研究成果: Article査読

36 被引用数 (Scopus)

抄録

Consider the stationary Navier-Stokes equations in a bounded domain whose boundary consists of multi-connected components. We investigate the solvability under the general flux condition which implies that the total sum of the flux of the given data on each component of the boundary is equal to zero. Based on our Helmholtz-Weyl decomposition, we prove existence of solutions if the harmonic part of the solenoidal extension of the given boundary data is sufficiently small in L3 compared with the viscosity constant.

本文言語English
ページ(範囲)27-39
ページ数13
ジャーナルMathematische Zeitschrift
262
1
DOI
出版ステータスPublished - 2009
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Leray's problem on the stationary Navier-Stokes equations with inhomogeneous boundary data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル