Lie algebra extensions of current algebras on S3

Tosiaki Kori, Yuto Imai

    研究成果: Article査読

    1 被引用数 (Scopus)

    抄録

    An affine Kac-Moody algebra is a central extension of the Lie algebra of smooth mappings from S1 to the complexification of a Lie algebra. In this paper, we shall introduce a central extension of the Lie algebra of smooth mappings from S3 to the quaternization of a Lie algebra and investigate its root space decomposition. We think this extension of current algebra might give a mathematical tool for four-dimensional conformal field theory as Kac-Moody algebras give it for two-dimensional conformal field theory.

    本文言語English
    論文番号1550087
    ジャーナルInternational Journal of Geometric Methods in Modern Physics
    12
    9
    DOI
    出版ステータスPublished - 2015 10月 1

    ASJC Scopus subject areas

    • 物理学および天文学(その他)

    フィンガープリント

    「Lie algebra extensions of current algebras on S3」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル