Lifespan estimates for local in time solutions to the semilinear heat equation on the Heisenberg group

Vladimir Georgiev, Alessandro Palmieri

研究成果: Article査読

3 被引用数 (Scopus)

抄録

In this paper, we consider the semilinear Cauchy problem for the heat equation with power nonlinearity in the Heisenberg group Hn. The heat operator is given in this case by ∂t-ΔH, where ΔH is the so-called sub-Laplacian on Hn. We prove that the Fujita exponent 1 + 2 / Q is critical, where Q= 2 n+ 2 is the homogeneous dimension of Hn. Furthermore, we prove sharp lifespan estimates for local in time solutions in the subcritical case and in the critical case. In order to get the upper bound estimate for the lifespan (especially, in the critical case), we employ a revisited test function method developed recently by Ikeda–Sobajima. On the other hand, to find the lower bound estimate for the lifespan, we prove a local in time result in weighted L space.

本文言語English
ページ(範囲)999-1032
ページ数34
ジャーナルAnnali di Matematica Pura ed Applicata
200
3
DOI
出版ステータスPublished - 2021 6

ASJC Scopus subject areas

  • 応用数学

フィンガープリント

「Lifespan estimates for local in time solutions to the semilinear heat equation on the Heisenberg group」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル