Light-induced spatial control of pH-jump reaction at smart gel interface

Prapatsorn Techawanitchai, Mitsuhiro Ebara, Naokazu Idota, Takao Aoyagi*


研究成果: Article査読

17 被引用数 (Scopus)


We proposed here a 'smart' control of an interface movement of proton diffusion in temperature- and pH-responsive hydrogels using a light-induced spatial pH-jump reaction. A photoinitiated proton-releasing reaction of o-nitrobenzaldehyde (NBA) was integrated into poly(N-isopropylacrylamide-o-2-carboxyisopropylacrylamide) (P(NIPAAm-co-CIPAAm)) hydrogels. NBA-integrated hydrogels demonstrated quick release of proton upon UV irradiation, allowing the pH inside the gel to decrease below the pK a of P(NIPAAm-co-CIPAAm) within a minute. The NBA-integrated gel was shown to shrink rapidly upon UV irradiation without polymer " skin layer" formation due to a uniform decrease of pH inside the gel. Spatial control of gel shrinking was also created by irradiating UV light to a limited region of the gel through a photomask. The interface of proton diffusion (" active interface" ) gradually moved toward non-illuminated area. The apparent position of " active interface" however, did not change remarkably above the LCST, while protons continuously diffused outward direction. This is because the " active interface" also moved inward direction as gel shrank above the LCST. As a result, slow movement of the apparent interface was observed. The NBA-integrated gel was also successfully employed for the controlled release of an entrapped dextran in a light controlled manner. This system is highly promising as smart platforms for triggered and programmed transportation of drugs.

ジャーナルColloids and Surfaces B: Biointerfaces
出版ステータスPublished - 2012 11月 1

ASJC Scopus subject areas

  • バイオテクノロジー
  • コロイド化学および表面化学
  • 物理化学および理論化学
  • 表面および界面


「Light-induced spatial control of pH-jump reaction at smart gel interface」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。