Limiting structure of steady-states to the Lotka-Volterra competition model with large diffusion and advection

Kousuke Kuto, Tohru Tsujikawa

研究成果: Article査読

18 被引用数 (Scopus)

抄録

This paper is concerned with the Neumann problem of a stationary Lotka-Volterra competition model with diffusion and advection. First we obtain some sufficient conditions of the existence of nonconstant solutions by the Leray-Schauder degree theory. Next we derive a limiting system as diffusion and advection of one of the species tend to infinity. The limiting system can be reduced to a semilinear elliptic equation with nonlocal constraint. In the simplified 1D case, the global bifurcation structure of nonconstant solutions of the limiting system can be classified depending on the coefficients. For example, this structure involves a global bifurcation curve which connects two different singularly perturbed states (boundary layer solutions and internal layer solutions). Our proof employs a levelset analysis for the associate integral mapping.

本文言語English
ページ(範囲)1801-1858
ページ数58
ジャーナルJournal of Differential Equations
258
5
DOI
出版ステータスPublished - 2015 3 5
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Limiting structure of steady-states to the Lotka-Volterra competition model with large diffusion and advection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル