Linking invariants of even virtual links

Haruko A. Miyazawa, Kodai Wada, Akira Yasuhara

研究成果: Article

1 引用 (Scopus)

抜粋

A virtual link diagram is even if the virtual crossings divide each component into an even number of arcs. The set of even virtual link diagrams is closed under classical and virtual Reidemeister moves, and it contains the set of classical link diagrams. For an even virtual link diagram, we define a certain linking invariant which is similar to the linking number. In contrast to the usual linking number, our linking invariant is not preserved under the forbidden moves. In particular, for two fused isotopic even virtual link diagrams, the difference between the linking invariants of them gives a lower bound of the minimal number of forbidden moves needed to deform one into the other. Moreover, we give an example which shows that the lower bound is best possible.

元の言語English
記事番号1750072
ジャーナルJournal of Knot Theory and its Ramifications
26
発行部数12
DOI
出版物ステータスPublished - 2017 10 1
外部発表Yes

ASJC Scopus subject areas

  • Algebra and Number Theory

フィンガープリント Linking invariants of even virtual links' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用