Linking numbers in rational homology 3-spheres, cyclic branched covers and infinite cyclic covers

Józef H. Przytycki, Akira Yasuhara

研究成果: Article

4 引用 (Scopus)

抜粋

We study the linking numbers in a rational homology 3-sphere and in the infinite cyclic cover of the complement of a knot. They take values in ℚ and in Q(ℤ[t,t -1]), respectively, where Q(ℤ[t,t -1]) denotes the quotient field of Z[t, t -1]. It is known that the modulo-Z linking number in the rational homology 3-sphere is determined by the linking matrix of the framed link and that the modulo-Z[t, t -1] linking number in the infinite cyclic cover of the complement of a knot is determined by the Seifert matrix of the knot. We eliminate 'modulo Z' and 'modulo Z[t, t -1]'. When the finite cyclic cover of the 3-sphere branched over a knot is a rational homology 3-sphere, the linking number of a pair in the preimage of a link in the 3-sphere is determined by the Goeritz/Seifert matrix of the knot.

元の言語English
ページ(範囲)3669-3685
ページ数17
ジャーナルTransactions of the American Mathematical Society
356
発行部数9
DOI
出版物ステータスPublished - 2004 9 1
外部発表Yes

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

フィンガープリント Linking numbers in rational homology 3-spheres, cyclic branched covers and infinite cyclic covers' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用