Local moves for links with common sublinks

Jean Baptiste Meilhan, Eri Seida, Akira Yasuhara*

*この研究の対応する著者

研究成果: Article査読

抄録

A Ck-move is a local move that involves k+1 strands of a link. A Ck-move is called a Ckd-move if these k+1 strands belong to mutually distinct components of a link. Since a Ckd-move preserves all k-component sublinks of a link, we consider the converse implication: are two links with common k-component sublinks related by a sequence of Ckd-moves? We show that the answer is yes under certain assumptions, and provide explicit counter-examples for more general situations. In particular, we consider (n, k)-Brunnian links, i.e. n-component links whose k-component sublinks are all trivial. We show that such links can be deformed into a trivial link by Ckd-moves, thus generalizing a result of Habiro and Miyazawa-Yasuhara, and deduce some results on finite type invariants of (n, k)-Brunnian links.

本文言語English
ページ(範囲)836-843
ページ数8
ジャーナルTopology and its Applications
160
6
DOI
出版ステータスPublished - 2013 4月 1
外部発表はい

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「Local moves for links with common sublinks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル