Local well-posedness and blow-up for the half ginzburg-landau-kuramoto equation with rough coefficients and potential

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We study the initial value problem for the half Ginzburg-Landau-Kuramoto (hGLK) equation with the second order elliptic operator having rough coefficients and potential type perturbation. The blow-up of solutions for hGLK equation with non-positive nonlinearity is shown by an ODE argument. The key tools in the proof are appropriate commutator estimates and the essential self-adjointness of the symmetric uniformly elliptic operator with rough metric and potential type perturbation.

本文言語English
ページ(範囲)2661-2678
ページ数18
ジャーナルDiscrete and Continuous Dynamical Systems- Series A
39
DOI
出版ステータスPublished - 2019 5

ASJC Scopus subject areas

  • Analysis
  • Discrete Mathematics and Combinatorics
  • Applied Mathematics

フィンガープリント 「Local well-posedness and blow-up for the half ginzburg-landau-kuramoto equation with rough coefficients and potential」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル