Local well-posedness for free boundary problem of viscous incompressible magnetohydrodynamics

Kenta Oishi, Yoshihiro Shibata*

*この研究の対応する著者

研究成果: Article査読

抄録

In this paper, we consider the motion of incompressible magnetohydrodynamics (MHD) with resistivity in a domain bounded by a free surface. An electromagnetic field generated by some currents in an external domain keeps an MHD flow in a bounded domain. On the free surface, free boundary conditions for MHD flow and transmission conditions for electromagnetic fields are imposed. We proved the local well-posedness in the general setting of domains from a mathematical point of view. The solutions are obtained in an anisotropic space H1 p((0, T), H1 q) ∩ Lp((0, T), H3 q) for the velocity field and in an anisotropic space H1 p((0, T), Lq) ∩ Lp((0, T), H2 q) for the magnetic fields with 2 < p < ∞, N < q < ∞ and 2/p + N/q < 1. To prove our main result, we used the Lp-Lq maximal regularity theorem for the Stokes equations with free boundary conditions and for the magnetic field equations with transmission conditions, which have been obtained by Frolova and the second author.

本文言語English
論文番号461
ページ(範囲)1-33
ページ数33
ジャーナルMathematics
9
5
DOI
出版ステータスPublished - 2021 3 1

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Local well-posedness for free boundary problem of viscous incompressible magnetohydrodynamics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル