Localized exciton dynamics in strained cubic In0.1Ga0.9N/GaN multiple quantum wells

S. F. Chichibu*, M. Sugiyama, T. Onuma, T. Kitamura, H. Nakanishi, T. Kuroda, A. Tackeuchi, T. Sota, Y. Ishida, H. Okumura


研究成果: Article査読

76 被引用数 (Scopus)


Radiative and nonradiative recombination dynamics in strained cubic (c-) In0.1Ga0.9N/c-GaN multiple quantum wells were studied using temperature-dependent time-resolved photoluminescence (TRPL) spectroscopy. In contrast to hexagonal InGaN quantum wells, low-excitation photoluminescence peak energy increased moderately with decreasing well thickness L and the PL lifetime did not strongly depend on L. The results clearly indicated that the piezoelectric field was not acting on the transition process. The TRPL signal was well fitted as a stretched exponential decay from 10 to 300 K, showing that the spontaneous emission is due to the radiative recombination of excitons localized in disordered quantum nanostructures such as In clusters. The localized states were considered to have two-dimensional density of states at 300 K (quantum disk size), since the radiative lifetime increased with increasing temperature above 150 K.

ジャーナルApplied Physics Letters
出版ステータスPublished - 2001 12 24

ASJC Scopus subject areas

  • 物理学および天文学(その他)


「Localized exciton dynamics in strained cubic In<sub>0.1</sub>Ga<sub>0.9</sub>N/GaN multiple quantum wells」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。