Long-time asymptotic solutions of convex Hamilton-Jacobi equations with Neumann type boundary conditions

Hitoshi Ishii

    研究成果: Article

    12 引用 (Scopus)

    抜粋

    We study the long-time asymptotic behavior of solutions u of the Hamilton-Jacobi equation ut(x, t) + H(x, Du(x, t)) = 0 in Ω × (0, ∞), where Ω is a bounded open subset of ℝn, with Hamiltonian H = H(x, p) being convex and coercive in p, and establish the uniform convergence of u to an asymptotic solution as t → ∞.

    元の言語English
    ページ(範囲)189-209
    ページ数21
    ジャーナルCalculus of Variations and Partial Differential Equations
    42
    発行部数1
    DOI
    出版物ステータスPublished - 2011 9

    ASJC Scopus subject areas

    • Analysis
    • Applied Mathematics

    フィンガープリント Long-time asymptotic solutions of convex Hamilton-Jacobi equations with Neumann type boundary conditions' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用