Look-Up Table based FHE System for Privacy Preserving Anomaly Detection in Smart Grids

Ruixiao Li, Shameek Bhattacharjee, Sajal K. Das, Hayato Yamana

研究成果: Conference contribution

抄録

In advanced metering infrastructure (AMI), the customers' power consumption data is considered private but needs to be revealed to data-driven attack detection frameworks. In this paper, we present a system for privacy-preserving anomaly-based data falsification attack detection over fully homomorphic encrypted (FHE) data, which enables computations required for the attack detection over encrypted individual customer smart meter's data. Specifically, we propose a homomorphic look-up table (LUT) based FHE approach that supports privacy preserving anomaly detection between the utility, customer, and multiple partied providing security services. In the LUTs, the data pairs of input and output values for each function required by the anomaly detection framework are stored to enable arbitrary arithmetic calculations over FHE. Furthermore, we adopt a private information retrieval (PIR) approach with FHE to enable approximate search with LUTs, which reduces the execution time of the attack detection service while protecting private information. Besides, we show that by adjusting the significant digits of inputs and outputs in our LUT, we can control the detection accuracy and execution time of the attack detection, even while using FHE. Our experiments confirmed that our proposed method is able to detect the injection of false power consumption in the range of 11-17 secs of execution time, depending on detection accuracy.

本文言語English
ホスト出版物のタイトルProceedings - 2022 IEEE International Conference on Smart Computing, SMARTCOMP 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ページ108-115
ページ数8
ISBN(電子版)9781665481526
DOI
出版ステータスPublished - 2022
イベント8th IEEE International Conference on Smart Computing, SMARTCOMP 2022 - Espoo, Finland
継続期間: 2022 6月 202022 6月 24

出版物シリーズ

名前Proceedings - 2022 IEEE International Conference on Smart Computing, SMARTCOMP 2022

Conference

Conference8th IEEE International Conference on Smart Computing, SMARTCOMP 2022
国/地域Finland
CityEspoo
Period22/6/2022/6/24

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Look-Up Table based FHE System for Privacy Preserving Anomaly Detection in Smart Grids」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル