Low-Rank Space-Time Decoupled Isogeometric Analysis for Parabolic Problems with Varying Coefficients

Angelos Mantzaflaris*, Felix Scholz, Ioannis Toulopoulos

*この研究の対応する著者

研究成果: Article査読

5 被引用数 (Scopus)

抄録

In this paper we present a space-time isogeometric analysis scheme for the discretization of parabolic evolution equations with diffusion coefficients depending on both time and space variables. The problem is considered in a space-time cylinder in Rd+1, with d = 2, and is discretized using higher-order and highly-smooth spline spaces. This makes the matrix formation task very challenging from a computational point of view. We overcome this problem by introducing a low-rank decoupling of the operator into space and time components. Numerical experiments demonstrate the efficiency of this approach.

本文言語English
ページ(範囲)123-136
ページ数14
ジャーナルComputational Methods in Applied Mathematics
19
1
DOI
出版ステータスPublished - 2019 1 1
外部発表はい

ASJC Scopus subject areas

  • 数値解析
  • 計算数学
  • 応用数学

フィンガープリント

「Low-Rank Space-Time Decoupled Isogeometric Analysis for Parabolic Problems with Varying Coefficients」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル