LP estimates for the linear wave equation and global existence for semilinear wave equations in exterior domains

Mitsuhiro Nakao

研究成果: Article査読

8 被引用数 (Scopus)

抄録

We consider the initial-boundary value problem for the semilinear wave equation utt - Δu + a(x)ut = f(u) in Ω x [0, ∞), u(x, 0) = u0(x), ut(x, 0) = u1(x) and u|∂Ω = 0, where Ω is an exterior domain in RN, a(x)ut is a dissipative term which is effective only near the 'critical part' of the boundary. We first give some LP estimates for the linear equation by combining the results of the local energy decay and LP estimates for the Cauchy problem in the whole space. Next, on the basis of these estimates we prove global existence of small amplitude solutions for semilinear equations when Ω is odd dimensional domain. When N = 3 and f = |u|αu our result is applied if α > 2√3-1. We note that no geometrical condition on the boundary ∂Ω is imposed.

本文言語English
ページ(範囲)11-31
ページ数21
ジャーナルMathematische Annalen
320
1
DOI
出版ステータスPublished - 2001
外部発表はい

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント 「L<sup>P</sup> estimates for the linear wave equation and global existence for semilinear wave equations in exterior domains」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル