Lp-Lq-Lr estimates and minimal decay regularity for compressible Euler-Maxwell equations

Jiang Xu, Naofumi Mori, Shuichi Kawashima

研究成果: Article査読

10 被引用数 (Scopus)

抄録

Due to the dissipative structure of regularity-loss, extra higher regularity than that for the global-in-time existence is usually imposed to obtain the optimal decay rates of classical solutions to dissipative systems. The aim of this paper is to seek the lowest regularity index for the optimal decay rate of L1(Rn)-L2(Rn). Consequently, a notion of minimal decay regularity for dissipative systems of regularity-loss is firstly proposed. To do this, we develop a new time-decay estimate of Lp(Rn)-Lq(Rn)-Lr(Rn) type by using the low-frequency and high-frequency analysis in Fourier spaces. As an application, for compressible Euler-Maxwell equations with the weaker dissipative mechanism, it is shown that the minimal decay regularity coincides with the critical regularity for global classical solutions. Moreover, the recent decay property for symmetric hyperbolic systems with non-symmetric dissipation is also extended to be the Lp-version.

本文言語English
ページ(範囲)965-981
ページ数17
ジャーナルJournal des Mathematiques Pures et Appliquees
104
5
DOI
出版ステータスPublished - 2015 11
外部発表はい

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

フィンガープリント 「L<sup>p</sup>-L<sup>q</sup>-L<sup>r</sup> estimates and minimal decay regularity for compressible Euler-Maxwell equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル