Lr-variational inequality for vector fields and the helmholtz-weyl decomposition in bounded domains

Hideo Kozono*, Taku Yanagisawa

*この研究の対応する著者

研究成果: Article査読

51 被引用数 (Scopus)

抄録

We show that every Lr-vector field on Ω can be uniquely decomposed into two spaces with scalar and vector potentials, and the harmonic vector space via operators rot and div, where Ω is a bounded domain in ℝ3 with the smooth boundary ∂Ω. Our decomposition consists of two kinds of boundary conditions such as u-v ∂Ω = 0 and u × ∂Ω = 0, where v denotes the unit outward normal to ∂Ω. Our results may be regarded as an extension of the well-known de Rham-Hodge-Kodaira decomposition of C∞-forms on compact Riemannian manifolds into Lr-vector fields on Ω. As an application, the generalized Biot-Savart law for the incompressible fluids in Ω is obtained. Furthermore, various bounds of u in Lr for higher derivatives are given by means of rot u and div u.

本文言語English
ページ(範囲)1853-1920
ページ数68
ジャーナルIndiana University Mathematics Journal
58
4
DOI
出版ステータスPublished - 2009
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「L<sup>r</sup>-variational inequality for vector fields and the helmholtz-weyl decomposition in bounded domains」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル