M2L at SemEval-2016 task 8: AMR parsing with neural networks

Yevgeniy Puzikov, Daisuke Kawahara, Sadao Kurohashi

研究成果: Conference contribution

7 被引用数 (Scopus)

抄録

This paper describes our contribution to the SemEval 2016 Workshop. We participated in the Shared Task 8 on Meaning Representation parsing using a transition-based approach, which builds upon the system of Wang et al. (2015a) and Wang et al. (2015b), with additions that utilize a Feedforward Neural Network classifier and an enriched feature set. We observed that exploiting Neural Networks in Meaning Representation parsing is challenging and we could not benefit from it, while the feature enhancements yielded an improved performance over the baseline model.

本文言語English
ホスト出版物のタイトルSemEval 2016 - 10th International Workshop on Semantic Evaluation, Proceedings
出版社Association for Computational Linguistics (ACL)
ページ1154-1159
ページ数6
ISBN(電子版)9781941643952
DOI
出版ステータスPublished - 2016
外部発表はい
イベント10th International Workshop on Semantic Evaluation, SemEval 2016 - San Diego, United States
継続期間: 2016 6月 162016 6月 17

出版物シリーズ

名前SemEval 2016 - 10th International Workshop on Semantic Evaluation, Proceedings

Conference

Conference10th International Workshop on Semantic Evaluation, SemEval 2016
国/地域United States
CitySan Diego
Period16/6/1616/6/17

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 計算理論と計算数学
  • コンピュータ サイエンスの応用

フィンガープリント

「M2L at SemEval-2016 task 8: AMR parsing with neural networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル