### 抜粋

The volume integral equation approach replaces magnetic materials with the magnetization in magnetostatic analysis. The concept of magnetic shell relates the magnetization with loop currents. The loop current is equivalent to the magnetic double layer, which gives an integral form of the scalar potential. The nonlinear magnetic field is formulated by regarding the nonlinear magnetization as volume magnetic charges. This paper presents how to utilize the volume charge to solve nonlinear problems. In the case of constant volume element we replace the volume charges with the surface loop currents to derive the nonlinear boundary integral equations having the line and surface loop currents as unknowns. The boundary integral equation is solved iteratively while improving alternately the loop and surface currents.

元の言語 | English |
---|---|

ページ（範囲） | 711-717 |

ページ数 | 7 |

ジャーナル | International Journal of Applied Electromagnetics and Mechanics |

巻 | 39 |

発行部数 | 1-4 |

DOI | |

出版物ステータス | Published - 2012 |

### フィンガープリント

### ASJC Scopus subject areas

- Electrical and Electronic Engineering
- Mechanical Engineering
- Mechanics of Materials
- Condensed Matter Physics
- Electronic, Optical and Magnetic Materials

### これを引用

*International Journal of Applied Electromagnetics and Mechanics*,

*39*(1-4), 711-717. https://doi.org/10.3233/JAE-2012-1533