Mathematical analysis of an in vivo model of mitochondrial swelling

Messoud Efendiev, Mitsuharu Otani, Hermann J. Eberl

    研究成果: Article査読

    3 被引用数 (Scopus)

    抄録

    We analyze the effect of Robin boundary conditions in a mathematical model for a mitochondria swelling in a living organism. This is a coupled PDE/ODE model for the dependent variables calcium ion contration and three fractions of mitochondria that are distinguished by their state of swelling activity. The model assumes that the boundary is a permeable membrane', through which calcium ions can both enter or leave the cell. Under biologically relevant assumptions on the data, we prove the well-posedness of solutions of the model and study the asymptotic behavior of its solutions. We augment the analysis of the model with computer simulations that illustrate the theoretically obtained results.

    本文言語English
    ページ(範囲)4131-4158
    ページ数28
    ジャーナルDiscrete and Continuous Dynamical Systems- Series A
    37
    7
    DOI
    出版ステータスPublished - 2017 7 1

    ASJC Scopus subject areas

    • Analysis
    • Discrete Mathematics and Combinatorics
    • Applied Mathematics

    フィンガープリント 「Mathematical analysis of an in vivo model of mitochondrial swelling」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル