TY - JOUR
T1 - Maximal L p - L q -Estimates for the stokes equation
T2 - A short proof of solonnikov's theorem
AU - Geissert, Matthias
AU - Hess, Matthias
AU - Hieber, Matthias Georg
AU - Schwarz, Céline
AU - Stavrakidis, Kyriakos
PY - 2010/3
Y1 - 2010/3
N2 - Introducing a new localization method involving Bogovskis operator we give a short and new proof for maximal L p - L q -estimates for the solution of the Stokes equation. Moreover, it is shown that, up to constants, the Stokes operator is an {\mathcal{R}} -sectorial operator in L{p}{\sigma}(\Omega), 1
AB - Introducing a new localization method involving Bogovskis operator we give a short and new proof for maximal L p - L q -estimates for the solution of the Stokes equation. Moreover, it is shown that, up to constants, the Stokes operator is an {\mathcal{R}} -sectorial operator in L{p}{\sigma}(\Omega), 1
KW - Exterior domains
KW - Maximal L - L -estimates
KW - Stokes equation
UR - http://www.scopus.com/inward/record.url?scp=77950458637&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77950458637&partnerID=8YFLogxK
U2 - 10.1007/s00021-008-0275-0
DO - 10.1007/s00021-008-0275-0
M3 - Article
AN - SCOPUS:77950458637
VL - 12
SP - 47
EP - 60
JO - Journal of Mathematical Fluid Mechanics
JF - Journal of Mathematical Fluid Mechanics
SN - 1422-6928
IS - 1
ER -