Maximal L p - L q -Estimates for the stokes equation: A short proof of solonnikov's theorem

Matthias Geissert, Matthias Hess, Matthias Georg Hieber, Céline Schwarz, Kyriakos Stavrakidis

研究成果: Article

21 引用 (Scopus)

抜粋

Introducing a new localization method involving Bogovskis operator we give a short and new proof for maximal L p - L q -estimates for the solution of the Stokes equation. Moreover, it is shown that, up to constants, the Stokes operator is an {\mathcal{R}} -sectorial operator in L{p}{\sigma}(\Omega), 1 <p <\infty, of {\mathcal{R}} -angle 0, for bounded or exterior domains of Ω.

元の言語English
ページ(範囲)47-60
ページ数14
ジャーナルJournal of Mathematical Fluid Mechanics
12
発行部数1
DOI
出版物ステータスPublished - 2010 3
外部発表Yes

ASJC Scopus subject areas

  • Applied Mathematics
  • Mathematical Physics
  • Computational Mathematics
  • Condensed Matter Physics

フィンガープリント Maximal L p - L q -Estimates for the stokes equation: A short proof of solonnikov's theorem' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用