Mean and variance of an alternating geometric process: An application in warranty cost analysis

Richard Arnold, Stefanka Chukova, Yu Hayakawa, Sarah Marshall*

*この研究の対応する著者

研究成果: Article査読

抄録

An alternating geometric process can be used to model the operational and repair times of an ageing system. In applications such as warranty cost analysis, the mean of an alternating geometric process (i.e. the expected number of events by a given time) and the variance are of interest. In this paper, two new approaches are proposed for computing the mean and variance functions of two counting processes related to the alternating geometric process, namely the number of cycles up to time (Formula presented.) and the number of failures up to time (Formula presented.). In warranty cost analysis, these approaches can be used to compute the expected number of claims and the expected cost over the warranty period. The usefulness of the proposed approaches in warranty cost analysis is demonstrated for a non-renewing free-repair warranty policy. The new approaches offer benefits over simulation in terms of computational time and accuracy.

本文言語English
ページ(範囲)2968-2985
ページ数18
ジャーナルQuality and Reliability Engineering International
38
6
DOI
出版ステータスPublished - 2022 10月

ASJC Scopus subject areas

  • 安全性、リスク、信頼性、品質管理
  • 経営科学およびオペレーションズ リサーチ

フィンガープリント

「Mean and variance of an alternating geometric process: An application in warranty cost analysis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル