Mean value inequalities for jump processes

Zhen Qing Chen, Takashi Kumagai*, Jian Wang

*この研究の対応する著者

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

Parabolic Harnack inequalities are one of the most important inequalities in analysis and PDEs, partly because they imply Hölder regularity of the solutions of heat equations. Mean value inequalities play an important role in deriving parabolic Harnack inequalities. In this paper, we first survey the recent results obtained in Chen et al. (Stability of heat kernel estimates for symmetric non-local Dirichlet forms, 2016, [15]; Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms, 2016, [16]) on the study of stability of heat kernel estimates and parabolic Harnack inequalities for symmetric jump processes on general metric measure spaces. We then establish the Lp -mean value inequalities for all p∈ (0, 2] for these processes.

本文言語English
ホスト出版物のタイトルStochastic Partial Differential Equations and Related Fields - In Honor of Michael Röckner SPDERF, 2016
編集者Gerald Trutnau, Andreas Eberle, Walter Hoh, Moritz Kassmann, Martin Grothaus, Wilhelm Stannat
出版社Springer New York LLC
ページ421-437
ページ数17
ISBN(印刷版)9783319749280
DOI
出版ステータスPublished - 2018
外部発表はい
イベントInternational conference on Stochastic Partial Differential Equations and Related Fields, SPDERF 2016 - Bielefeld, Germany
継続期間: 2016 10月 102016 10月 14

出版物シリーズ

名前Springer Proceedings in Mathematics and Statistics
229
ISSN(印刷版)2194-1009
ISSN(電子版)2194-1017

Other

OtherInternational conference on Stochastic Partial Differential Equations and Related Fields, SPDERF 2016
国/地域Germany
CityBielefeld
Period16/10/1016/10/14

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Mean value inequalities for jump processes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル