Methane dissociative adsorption in catalytic steam reforming of methane over Pd/CeO2 in an electric field

S. Okada, R. Manabe, R. Inagaki, S. Ogo, Y. Sekine*

*この研究の対応する著者

研究成果: Article査読

36 被引用数 (Scopus)

抄録

To elucidate the reaction mechanism of catalytic steam reforming of methane in an electric field, operando–diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) has been used to investigate methane dissociative adsorption at low temperatures using CH4, H2O, and their isotopes. Operando-analyses demonstrated that methane was adsorbed and converted into CO and CO2 more when CD4 and/or D2O was used instead of CH4 and/or H2O. This observed “inverse” kinetic isotope effect is based on the difference of C–H–H vibrational energy level at the transition state. Furthermore, CO2-methanation, which is the reverse reaction of steam reforming of methane, was irreversible with H2O in an electric field. These results demonstrate that the proton collision promoted methane activation irreversibly, even at low temperatures in an electric field.

本文言語English
ページ(範囲)272-276
ページ数5
ジャーナルCatalysis Today
307
DOI
出版ステータスPublished - 2018 6月 1

ASJC Scopus subject areas

  • 触媒
  • 化学 (全般)

フィンガープリント

「Methane dissociative adsorption in catalytic steam reforming of methane over Pd/CeO2 in an electric field」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル