Minimal model of a cell connecting amoebic motion and adaptive transport networks

Yukio Pegio Gunji*, Tomohiro Shirakawa, Takayuki Niizato, Taichi Haruna

*この研究の対応する著者

研究成果: Article査読

61 被引用数 (Scopus)

抄録

A cell is a minimal self-sustaining system that can move and compute. Previous work has shown that a unicellular slime mold, Physarum, can be utilized as a biological computer based on cytoplasmic flow encapsulated by a membrane. Although the interplay between the modification of the boundary of a cell and the cytoplasmic flow surrounded by the boundary plays a key role in Physarum computing, no model of a cell has been developed to describe this interplay. Here we propose a toy model of a cell that shows amoebic motion and can solve a maze, Steiner minimum tree problem and a spanning tree problem. Only by assuming that cytoplasm is hardened after passing external matter (or softened part) through a cell, the shape of the cell and the cytoplasmic flow can be changed. Without cytoplasm hardening, a cell is easily destroyed. This suggests that cytoplasmic hardening and/or sol-gel transformation caused by external perturbation can keep a cell in a critical state leading to a wide variety of shapes and motion.

本文言語English
ページ(範囲)659-667
ページ数9
ジャーナルJournal of Theoretical Biology
253
4
DOI
出版ステータスPublished - 2008 8月 21
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • モデリングとシミュレーション
  • 生化学、遺伝学、分子生物学(全般)
  • 免疫学および微生物学(全般)
  • 農業および生物科学(全般)
  • 応用数学

フィンガープリント

「Minimal model of a cell connecting amoebic motion and adaptive transport networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル