抄録
In this paper, we propose parameter estimation techniques for mixture density polynomial segment models (henceforth MDPSM) where their trajectories are specified with an arbitrary regression order. MDPSM parameters can be trained in one of three different ways: (1) segment clustering, (2) expectation maximization (EM) training of mean trajectories, or (3) EM training of mean and variance trajectories. These parameter estimation methods were evaluated in TIMIT vowel classification experiments. The experimental results showed that modeling both the mean and variance trajectories are consistently superior to modeling only the mean trajectory. We also found that modeling both trajectories results in significant improvements over the conventional HMM.
本文言語 | English |
---|---|
ページ(範囲) | 1403-1406 |
ページ数 | 4 |
ジャーナル | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
巻 | 2 |
出版ステータス | Published - 1997 1月 1 |
外部発表 | はい |
イベント | Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP. Part 1 (of 5) - Munich, Ger 継続期間: 1997 4月 21 → 1997 4月 24 |
ASJC Scopus subject areas
- ソフトウェア
- 信号処理
- 電子工学および電気工学