Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra

Masahiro Ando, Hiro O. Hamaguchi*

*この研究の対応する著者

研究成果: Article査読

53 被引用数 (Scopus)

抄録

Label-free Raman microspectroscopy combined with a multivariate curve resolution (MCR) analysis can be a powerful tool for studying a wide range of biomedical molecular systems. The MCR with the alternating least squares (MCR-ALS) technique, which retrieves the pure component spectra from complicatedly overlapped spectra, has been successfully applied to in vivo and molecular-level analysis of living cells. The principles of the MCR-ALS analysis are reviewed with a model system of titanium oxide crystal polymorphs, followed by two examples of in vivo Raman imaging studies of living yeast cells, fission yeast, and budding yeast. Due to the non-negative matrix factorization algorithm used in the MCR-ALS analysis, the spectral information derived from this technique is just ready for physical and/or chemical interpretations. The corresponding concentration profiles provide the molecular component distribution images (MCDIs) that are vitally important for elucidating life at the molecular level, as stated by Schroedinger in his famous book, "What is life?" Without any a priori knowledge about spectral profiles, timeand space-resolved Raman measurements of a dividing fission yeast cell with the MCR-ALS elucidate the dynamic changes of major cellular components (lipids, proteins, and polysaccharides) during the cell cycle. The MCR-ALS technique also resolves broadly overlapped OH stretch Raman bands of water, clearly indicating the existence of organelle-specific water structures in a living budding yeast cell.

本文言語English
論文番号130312SSR
ジャーナルJournal of Biomedical Optics
19
1
DOI
出版ステータスPublished - 2014

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 生体材料
  • 原子分子物理学および光学
  • 生体医工学

フィンガープリント

「Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル