### 抜粋

A general theory of monodromy preserving deformation is developed for a system of linear ordinary differential equations dY dx=A(x)Y, where A(x) is a rational matrix. The non-linear deformation equations are derived and their complete integrability is proved. An explicit formula is found for a 1-form ω, expressed rationally in terms of the coefficients of A(x), that has the property dω=0 for each solution of the deformation equations. Examples corresponding to the "soliton" and "rational" solutions are discussed.

元の言語 | English |
---|---|

ページ（範囲） | 306-352 |

ページ数 | 47 |

ジャーナル | Physica D: Nonlinear Phenomena |

巻 | 2 |

発行部数 | 2 |

DOI | |

出版物ステータス | Published - 1981 |

外部発表 | Yes |

### ASJC Scopus subject areas

- Applied Mathematics
- Statistical and Nonlinear Physics

## フィンガープリント Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and τ-function' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

Jimbo, M., Miwa, T., & Ueno, K. (1981). Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and τ-function.

*Physica D: Nonlinear Phenomena*,*2*(2), 306-352. https://doi.org/10.1016/0167-2789(81)90013-0