Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and τ-function

Michio Jimbo, Tetsuji Miwa, Kimio Ueno

研究成果: Article

451 引用 (Scopus)

抜粋

A general theory of monodromy preserving deformation is developed for a system of linear ordinary differential equations dY dx=A(x)Y, where A(x) is a rational matrix. The non-linear deformation equations are derived and their complete integrability is proved. An explicit formula is found for a 1-form ω, expressed rationally in terms of the coefficients of A(x), that has the property dω=0 for each solution of the deformation equations. Examples corresponding to the "soliton" and "rational" solutions are discussed.

元の言語English
ページ(範囲)306-352
ページ数47
ジャーナルPhysica D: Nonlinear Phenomena
2
発行部数2
DOI
出版物ステータスPublished - 1981
外部発表Yes

ASJC Scopus subject areas

  • Applied Mathematics
  • Statistical and Nonlinear Physics

フィンガープリント Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and τ-function' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用