Motion by mean curvature from the Ginzburg-Landau ▽ φ interface model

T. Funaki*, H. Spohn

*この研究の対応する著者

研究成果: Article査読

102 被引用数 (Scopus)

抄録

We consider the scalar field φt with a reversible stochastic dynamics which is defined by the standard Dirichlet form relative to the Gibbs measure with formal energy ∫ ddxV(▽φ(x)). The potential V is even and strictly convex. We prove that under a suitable large scale limit the φt-field becomes deterministic such that locally its normal velocity is proportional to its mean curvature, except for some anisotropy effects. As an essential input we prove that for every tilt there is a unique shift invariant, ergodic Gibbs measure for the ▽φ-field.

本文言語English
ページ(範囲)1-36
ページ数36
ジャーナルCommunications in Mathematical Physics
185
1
DOI
出版ステータスPublished - 1997 1月 1
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Motion by mean curvature from the Ginzburg-Landau ▽ φ interface model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル