Motion by mean curvature from the Ginzburg-Landau ▽ φ interface model

T. Funaki, H. Spohn

研究成果: Article査読

90 被引用数 (Scopus)

抄録

We consider the scalar field φt with a reversible stochastic dynamics which is defined by the standard Dirichlet form relative to the Gibbs measure with formal energy ∫ ddxV(▽φ(x)). The potential V is even and strictly convex. We prove that under a suitable large scale limit the φt-field becomes deterministic such that locally its normal velocity is proportional to its mean curvature, except for some anisotropy effects. As an essential input we prove that for every tilt there is a unique shift invariant, ergodic Gibbs measure for the ▽φ-field.

本文言語English
ページ(範囲)1-36
ページ数36
ジャーナルCommunications in Mathematical Physics
185
1
DOI
出版ステータスPublished - 1997 1 1
外部発表はい

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

フィンガープリント 「Motion by mean curvature from the Ginzburg-Landau ▽ φ interface model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル