MULTI-CHANNEL END-TO-END NEURAL DIARIZATION WITH DISTRIBUTED MICROPHONES

Shota Horiguchi*, Yuki Takashima, Paola García, Shinji Watanabe, Yohei Kawaguchi

*この研究の対応する著者

研究成果: Conference contribution

抄録

Recent progress on end-to-end neural diarization (EEND) has enabled overlap-aware speaker diarization with a single neural network. This paper proposes to enhance EEND by using multi-channel signals from distributed microphones. We replace Transformer encoders in EEND with two types of encoders that process a multichannel input: spatio-temporal and co-attention encoders. Both are independent of the number and geometry of microphones and suitable for distributed microphone settings. We also propose a model adaptation method using only single-channel recordings. With simulated and real-recorded datasets, we demonstrated that the proposed method outperformed conventional EEND when a multi-channel input was given while maintaining comparable performance with a single-channel input. We also showed that the proposed method performed well even when spatial information is inoperative given multi-channel inputs, such as in hybrid meetings in which the utterances of multiple remote participants are played back from the same loudspeaker.

本文言語English
ホスト出版物のタイトル2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ7332-7336
ページ数5
ISBN(電子版)9781665405409
DOI
出版ステータスPublished - 2022
外部発表はい
イベント47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore
継続期間: 2022 5月 232022 5月 27

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2022-May
ISSN(印刷版)1520-6149

Conference

Conference47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
国/地域Singapore
CityVirtual, Online
Period22/5/2322/5/27

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「MULTI-CHANNEL END-TO-END NEURAL DIARIZATION WITH DISTRIBUTED MICROPHONES」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル