Multi objective optimization based fast motion detector

Jia Su, Xin Wei, Xiaocong Jin, Takeshi Ikenaga

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

A large number of surveillance applications require fast action, and since many surveillance applications, motive objects contain most critical information. Fast detection algorithm system becomes a necessity. A problem in computer vision is the determination of weights for multiple objective function optimizations. In this paper we propose techniques for automatically determining the weights, and discuss their properties. The Min-Max Principle, which avoids the problems of extremely low or high weights, is introduced. Expressions are derived relating the optimal weights, objective function values, and total cost. Simulation results show, compared to the conventional work, it can achieve around 40% time saving and higher detection accuracy for both outdoor and indoor surveillance videos.

本文言語English
ホスト出版物のタイトルAdvances in Multimedia Modeling - 17th International Multimedia Modeling Conference, MMM 2011, Proceedings
編集者Kuo-Tien Lee, Jun-Wei Hsieh, Wen-Hsiang Tsai, Hong-Yuan Mark Liao, Tsuhan Chen, Chien-Cheng Tseng
出版社Springer Verlag
ページ492-502
ページ数11
ISBN(印刷版)9783642178313
DOI
出版ステータスPublished - 2011
イベント17th International Conference on Multimedia Modeling, MMM 2011 - Taipei, Taiwan, Province of China
継続期間: 2011 1 52011 1 7

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
6523 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference17th International Conference on Multimedia Modeling, MMM 2011
国/地域Taiwan, Province of China
CityTaipei
Period11/1/511/1/7

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • 理論的コンピュータサイエンス

フィンガープリント

「Multi objective optimization based fast motion detector」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル