Multi-scale dilated convolution network based depth estimation in intelligent transportation systems

Yanling Tian, Qieshi Zhang*, Ziliang Ren, Fuxiang Wu, Pengyi Hao, Jinglu Hu

*この研究の対応する著者

研究成果査読

9 被引用数 (Scopus)

抄録

Vision based depth estimation plays a significant role in Intelligent Transportation Systems (ITS) because of its low cost and high efficiency, which can be used to analyze driving environment, improve driving safety, etc. Although recently proposed approaches abandon time consuming pre-processing or post-processing steps and achieve an end-to-end prediction manner, fine details may be lost through max-pooling based encode modules. To tackle this problem, we propose Multi-Scale Dilated Convolution Network (MSDC-Net), a dilated convolution based deep network. For the feature encoding and decoding part, dilated layers maintain the scale of original image and reduce lost details. After that, a pyramid dilated feature extraction module is added to integrate the knowledge learned through forward steps with different receptive fields. The proposed approach is evaluated on KITTI dataset, and achieves a state-of-the-art result on the dataset.

本文言語English
論文番号8936425
ページ(範囲)185179-185188
ページ数10
ジャーナルIEEE Access
7
DOI
出版ステータスPublished - 2019

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • 材料科学(全般)
  • 工学(全般)

フィンガープリント

「Multi-scale dilated convolution network based depth estimation in intelligent transportation systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル