Multiclass composite N-gram language model based on connection direction

Hirofumi Yamamoto*, Yoshinori Sagisaka

*この研究の対応する著者

研究成果: Article査読

3 被引用数 (Scopus)

抄録

The authors propose a method to generate a compact, highly reliable language model for speech recognition based on the efficient classification of words. In this method, the connectedness with the words immediately before and after the word is taken to represent separate attributes, and individual classification is performed for each word. The resulting composite word class is created separately based on the distribution of words connected before or after. As a result, classification of classes is efficient and reliable. In a multiclass composite N-gram, which uses the proposed method for the variable-order N-gram to bring in chain words, the entry size is reduced to one-tenth, and the word recognition rate is higher than that of a conventional composite N-gram for particles or variable-length word arrays.

本文言語English
ページ(範囲)108-114
ページ数7
ジャーナルSystems and Computers in Japan
34
7
DOI
出版ステータスPublished - 2003 6月 30
外部発表はい

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 情報システム
  • ハードウェアとアーキテクチャ
  • 計算理論と計算数学

フィンガープリント

「Multiclass composite N-gram language model based on connection direction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル