Multiobjective process planning and scheduling using improved vector evaluated genetic algorithm with archive

Wenqiang Zhang, Shigeru Fujimura*

*この研究の対応する著者

研究成果: Article査読

14 被引用数 (Scopus)

抄録

Multiobjective process planning and scheduling (PPS) is a most important practical but very intractable combinatorial optimization problem in manufacturing systems. Many researchers have used multiobjective evolutionary algorithms (moEAs) to solve such problems; however, these approaches could not achieve satisfactory results in both efficacy (quality, i.e., convergence and distribution) and efficiency (speed). As classical moEAs, nondominated sorting genetic algorithm II (NSGA-II) and SPEA2 can get good efficacy but need much CPU time. Vector evaluated genetic algorithm (VEGA) also cannot be applied owing to its poor efficacy. This paper proposes an improved VEGA with archive (iVEGA-A) to deal with multiobjective PPS problems, with consideration being given to the minimization of both makespan and machine workload variation. The proposed method tactfully combines the mechanism of VEGA with a preference for the edge region of the Pareto front and the characteristics of generalized Pareto-based scale-independent fitness function (gp-siff) with the tendency to converge toward the central area of the Pareto front. These two mechanisms not only preserve the convergence rate but also guarantee better distribution performance. Moreover, some problem-dependent crossover, mutation, and local search methods are used to improve the performance of the algorithm. Complete numerical comparisons show that the iVEGA-A is obviously better than VEGA in efficacy, and the convergence performance is also better than NSGA-II and SPEA2, while the distribution performance is comparable to and the efficiency is obviously better than theirs.

本文言語English
ページ(範囲)258-267
ページ数10
ジャーナルIEEJ Transactions on Electrical and Electronic Engineering
7
3
DOI
出版ステータスPublished - 2012 5月

ASJC Scopus subject areas

  • 電子工学および電気工学

フィンガープリント

「Multiobjective process planning and scheduling using improved vector evaluated genetic algorithm with archive」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル