Multiple-hand-gesture tracking using multiple cameras

Akira Utsumi*, Jun Ohya


研究成果: Conference article査読

80 被引用数 (Scopus)


We propose a method of tracking 3D position, posture, and shapes of human hands from multiple-viewpoint images. Self-occlusion and hand-hand occlusion are serious problems in the vision-based hand tracking. Our system employs multiple-viewpoint and viewpoint selection mechanism to reduce these problems. Each hand position is tracked with a Kalman filter and the motion vectors are updated with image features in selected images that do not include hand-hand occlusion. 3D hand postures are estimated with a small number of reliable image features. These features are extracted based on distance transformation, and they are robust against changes in hand shape and self-occlusion. Finally, a `best view' image is selected for each hand for shape recognition. The shape recognition process is based on a Fourier descriptor. Our system can be used as a user interface device in a virtual environment, replacing glove-type devices and overcoming most of the disadvantages of contact-type devices.

ジャーナルProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
出版ステータスPublished - 1999 1月 1
イベントProceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'99) - Fort Collins, CO, USA
継続期間: 1999 6月 231999 6月 25

ASJC Scopus subject areas

  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識


「Multiple-hand-gesture tracking using multiple cameras」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。