Multiplicities of Schubert varieties in the symplectic flag variety

Dave Anderson, Takeshi Ikeda, Minyoung Jeon, Ryotaro Kawago

研究成果: Paper査読

抄録

Let Ww be a Schubert variety in the symplectic flag variety, and let ev 2 Ww be a torus fixed point. We give a combinatorial formula for the Hilbert-Samuel multiplicity of Ww at the point ev, in the case where w is a vexillary signed permutation. Our formula is phrased in terms of excited Young diagrams, extending results by Ghorpade-Raghavan and Ikeda-Naruse for Grassmannians, as well as Li-Yong for vexillary Schubert varieties in type A flag manifolds.

本文言語English
出版ステータスPublished - 2019
外部発表はい
イベント31st International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2019 - Ljubljana, Slovenia
継続期間: 2019 7 12019 7 5

Conference

Conference31st International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2019
国/地域Slovenia
CityLjubljana
Period19/7/119/7/5

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Multiplicities of Schubert varieties in the symplectic flag variety」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル