N-soliton solutions to the DKP equation and Weyl group actions

Yuji Kodama, Ken Ichi Maruno

研究成果: Article査読

13 被引用数 (Scopus)

抄録

We study soliton solutions to the DKP equation which is defined by the Hirota bilinear form, where τ0 ≤ 1. The τ-functions τn are given by the Pfaffians of a certain skew-symmetric matrix. We identify a one-soliton solution as an element of the Weyl group of D-type, and discuss a general structure of the interaction patterns among the solitons. Soliton solutions are characterized by a 4N × 4N skew-symmetric constant matrix which we call the B-matrix. We then find that one can have M-soliton solutions with M being any number from N to 2N - 1 for some of the 4N × 4N B-matrices having only 2N nonzero entries in the upper-triangular part (the number of solitons obtained from those B-matrices was previously expected to be just N).

本文言語English
ページ(範囲)4063-4086
ページ数24
ジャーナルJournal of Physics A: Mathematical and General
39
15
DOI
出版ステータスPublished - 2006 4 14
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 物理学および天文学(全般)

フィンガープリント

「N-soliton solutions to the DKP equation and Weyl group actions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル